Copied to
clipboard

G = C5×C322C8order 360 = 23·32·5

Direct product of C5 and C322C8

direct product, metabelian, soluble, monomial, A-group

Aliases: C5×C322C8, C322C40, (C3×C15)⋊8C8, (C3×C6).C20, (C3×C30).5C4, C10.3(C32⋊C4), C3⋊Dic3.1C10, C2.(C5×C32⋊C4), (C5×C3⋊Dic3).3C2, SmallGroup(360,55)

Series: Derived Chief Lower central Upper central

C1C32 — C5×C322C8
C1C32C3×C6C3⋊Dic3C5×C3⋊Dic3 — C5×C322C8
C32 — C5×C322C8
C1C10

Generators and relations for C5×C322C8
 G = < a,b,c,d | a5=b3=c3=d8=1, ab=ba, ac=ca, ad=da, dcd-1=bc=cb, dbd-1=b-1c >

2C3
2C3
9C4
2C6
2C6
2C15
2C15
9C8
6Dic3
6Dic3
9C20
2C30
2C30
9C40
6C5×Dic3
6C5×Dic3

Smallest permutation representation of C5×C322C8
On 120 points
Generators in S120
(1 61 26 51 93)(2 62 27 52 94)(3 63 28 53 95)(4 64 29 54 96)(5 57 30 55 89)(6 58 31 56 90)(7 59 32 49 91)(8 60 25 50 92)(9 85 110 22 36)(10 86 111 23 37)(11 87 112 24 38)(12 88 105 17 39)(13 81 106 18 40)(14 82 107 19 33)(15 83 108 20 34)(16 84 109 21 35)(41 115 74 99 65)(42 116 75 100 66)(43 117 76 101 67)(44 118 77 102 68)(45 119 78 103 69)(46 120 79 104 70)(47 113 80 97 71)(48 114 73 98 72)
(2 19 104)(4 98 21)(6 23 100)(8 102 17)(10 42 31)(12 25 44)(14 46 27)(16 29 48)(33 70 62)(35 64 72)(37 66 58)(39 60 68)(50 118 88)(52 82 120)(54 114 84)(56 86 116)(73 109 96)(75 90 111)(77 105 92)(79 94 107)
(1 18 103)(2 19 104)(3 97 20)(4 98 21)(5 22 99)(6 23 100)(7 101 24)(8 102 17)(9 41 30)(10 42 31)(11 32 43)(12 25 44)(13 45 26)(14 46 27)(15 28 47)(16 29 48)(33 70 62)(34 63 71)(35 64 72)(36 65 57)(37 66 58)(38 59 67)(39 60 68)(40 69 61)(49 117 87)(50 118 88)(51 81 119)(52 82 120)(53 113 83)(54 114 84)(55 85 115)(56 86 116)(73 109 96)(74 89 110)(75 90 111)(76 112 91)(77 105 92)(78 93 106)(79 94 107)(80 108 95)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)

G:=sub<Sym(120)| (1,61,26,51,93)(2,62,27,52,94)(3,63,28,53,95)(4,64,29,54,96)(5,57,30,55,89)(6,58,31,56,90)(7,59,32,49,91)(8,60,25,50,92)(9,85,110,22,36)(10,86,111,23,37)(11,87,112,24,38)(12,88,105,17,39)(13,81,106,18,40)(14,82,107,19,33)(15,83,108,20,34)(16,84,109,21,35)(41,115,74,99,65)(42,116,75,100,66)(43,117,76,101,67)(44,118,77,102,68)(45,119,78,103,69)(46,120,79,104,70)(47,113,80,97,71)(48,114,73,98,72), (2,19,104)(4,98,21)(6,23,100)(8,102,17)(10,42,31)(12,25,44)(14,46,27)(16,29,48)(33,70,62)(35,64,72)(37,66,58)(39,60,68)(50,118,88)(52,82,120)(54,114,84)(56,86,116)(73,109,96)(75,90,111)(77,105,92)(79,94,107), (1,18,103)(2,19,104)(3,97,20)(4,98,21)(5,22,99)(6,23,100)(7,101,24)(8,102,17)(9,41,30)(10,42,31)(11,32,43)(12,25,44)(13,45,26)(14,46,27)(15,28,47)(16,29,48)(33,70,62)(34,63,71)(35,64,72)(36,65,57)(37,66,58)(38,59,67)(39,60,68)(40,69,61)(49,117,87)(50,118,88)(51,81,119)(52,82,120)(53,113,83)(54,114,84)(55,85,115)(56,86,116)(73,109,96)(74,89,110)(75,90,111)(76,112,91)(77,105,92)(78,93,106)(79,94,107)(80,108,95), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)>;

G:=Group( (1,61,26,51,93)(2,62,27,52,94)(3,63,28,53,95)(4,64,29,54,96)(5,57,30,55,89)(6,58,31,56,90)(7,59,32,49,91)(8,60,25,50,92)(9,85,110,22,36)(10,86,111,23,37)(11,87,112,24,38)(12,88,105,17,39)(13,81,106,18,40)(14,82,107,19,33)(15,83,108,20,34)(16,84,109,21,35)(41,115,74,99,65)(42,116,75,100,66)(43,117,76,101,67)(44,118,77,102,68)(45,119,78,103,69)(46,120,79,104,70)(47,113,80,97,71)(48,114,73,98,72), (2,19,104)(4,98,21)(6,23,100)(8,102,17)(10,42,31)(12,25,44)(14,46,27)(16,29,48)(33,70,62)(35,64,72)(37,66,58)(39,60,68)(50,118,88)(52,82,120)(54,114,84)(56,86,116)(73,109,96)(75,90,111)(77,105,92)(79,94,107), (1,18,103)(2,19,104)(3,97,20)(4,98,21)(5,22,99)(6,23,100)(7,101,24)(8,102,17)(9,41,30)(10,42,31)(11,32,43)(12,25,44)(13,45,26)(14,46,27)(15,28,47)(16,29,48)(33,70,62)(34,63,71)(35,64,72)(36,65,57)(37,66,58)(38,59,67)(39,60,68)(40,69,61)(49,117,87)(50,118,88)(51,81,119)(52,82,120)(53,113,83)(54,114,84)(55,85,115)(56,86,116)(73,109,96)(74,89,110)(75,90,111)(76,112,91)(77,105,92)(78,93,106)(79,94,107)(80,108,95), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120) );

G=PermutationGroup([[(1,61,26,51,93),(2,62,27,52,94),(3,63,28,53,95),(4,64,29,54,96),(5,57,30,55,89),(6,58,31,56,90),(7,59,32,49,91),(8,60,25,50,92),(9,85,110,22,36),(10,86,111,23,37),(11,87,112,24,38),(12,88,105,17,39),(13,81,106,18,40),(14,82,107,19,33),(15,83,108,20,34),(16,84,109,21,35),(41,115,74,99,65),(42,116,75,100,66),(43,117,76,101,67),(44,118,77,102,68),(45,119,78,103,69),(46,120,79,104,70),(47,113,80,97,71),(48,114,73,98,72)], [(2,19,104),(4,98,21),(6,23,100),(8,102,17),(10,42,31),(12,25,44),(14,46,27),(16,29,48),(33,70,62),(35,64,72),(37,66,58),(39,60,68),(50,118,88),(52,82,120),(54,114,84),(56,86,116),(73,109,96),(75,90,111),(77,105,92),(79,94,107)], [(1,18,103),(2,19,104),(3,97,20),(4,98,21),(5,22,99),(6,23,100),(7,101,24),(8,102,17),(9,41,30),(10,42,31),(11,32,43),(12,25,44),(13,45,26),(14,46,27),(15,28,47),(16,29,48),(33,70,62),(34,63,71),(35,64,72),(36,65,57),(37,66,58),(38,59,67),(39,60,68),(40,69,61),(49,117,87),(50,118,88),(51,81,119),(52,82,120),(53,113,83),(54,114,84),(55,85,115),(56,86,116),(73,109,96),(74,89,110),(75,90,111),(76,112,91),(77,105,92),(78,93,106),(79,94,107),(80,108,95)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)]])

60 conjugacy classes

class 1  2 3A3B4A4B5A5B5C5D6A6B8A8B8C8D10A10B10C10D15A···15H20A···20H30A···30H40A···40P
order12334455556688881010101015···1520···2030···3040···40
size114499111144999911114···49···94···49···9

60 irreducible representations

dim111111114444
type+++-
imageC1C2C4C5C8C10C20C40C32⋊C4C322C8C5×C32⋊C4C5×C322C8
kernelC5×C322C8C5×C3⋊Dic3C3×C30C322C8C3×C15C3⋊Dic3C3×C6C32C10C5C2C1
# reps1124448162288

Matrix representation of C5×C322C8 in GL5(𝔽241)

10000
087000
008700
000870
000087
,
10000
01000
00100
00001
0265240240
,
10000
0024000
0124000
023422901
019234240240
,
2330000
0002401
0265239240
0204702297
0105272297

G:=sub<GL(5,GF(241))| [1,0,0,0,0,0,87,0,0,0,0,0,87,0,0,0,0,0,87,0,0,0,0,0,87],[1,0,0,0,0,0,1,0,0,26,0,0,1,0,5,0,0,0,0,240,0,0,0,1,240],[1,0,0,0,0,0,0,1,234,19,0,240,240,229,234,0,0,0,0,240,0,0,0,1,240],[233,0,0,0,0,0,0,26,204,105,0,0,5,70,27,0,240,239,229,229,0,1,240,7,7] >;

C5×C322C8 in GAP, Magma, Sage, TeX

C_5\times C_3^2\rtimes_2C_8
% in TeX

G:=Group("C5xC3^2:2C8");
// GroupNames label

G:=SmallGroup(360,55);
// by ID

G=gap.SmallGroup(360,55);
# by ID

G:=PCGroup([6,-2,-5,-2,-2,-3,3,60,50,8404,256,11525,881]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^3=c^3=d^8=1,a*b=b*a,a*c=c*a,a*d=d*a,d*c*d^-1=b*c=c*b,d*b*d^-1=b^-1*c>;
// generators/relations

Export

Subgroup lattice of C5×C322C8 in TeX

׿
×
𝔽